
DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

METHODOLOGY FOR SENSITIVITY ANALYSIS, APPROXIMATE

ANALYSIS, AND DESIGN OPTIMIZATION IN CFD

FOR MULTIDISCIPLINARY APPLICATIONS

By

Arthur C. Taylor III, Principal Investigator

Gene W. Hou, Co-Principal Investigator

Progress Report

For the period February 1, 1993 to August 31, 1994

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681

Under

Research Contract NAG-I-1265

Dr. Henry E. Jones, Technical Monitor

FMAD-Multidisciplinary Design Optimization Branch

= i¸

Submitted to the

Old Dominion University Research Foundation

P.O. Box 6369

Norfolk, Virginia 23508-0369

September 1994

Overview

This progress report, for grant NAG-l-1265, is given in the form of a manuscript which is to

be submitted for publication in the Journal of Computational Physics, titled "First- and Second-

Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation with Incremental

Iterative Forms." This manuscript was also presented as an unpublished AIAA paper 94-4262

and the 5th AIAA/USAF/NASA/OAI Multidisciplinary Design and Optimization Conference,

September 1994, in Panama City, Florida. The work illustrates the successful completion of a

large portion of the tasks which were promised during this year of the grant.

Arthur C. Taylor III

Assistant Professor

W

First- and Second-Order Aerodynamic Sensitivity
Derivatives via Automatic Differentiation

with Incremental Iterative Methods

Laura L. Sherman and Arthur C. Taylor HI

Department Of Mechanical Engineering

Old Dominion University, Norfolk, Va. 23529--0247

Larry L. Green and Perry A. Newman

Computational Sciences Branch

NASA Langley Research Center, Hampton, Va. 23665--5225

Gene W. Hou and Vamshi Mohan Korivi

Department Of Mechanical Engineering

Old Dominion University, Norfolk, Va. 23529-0247

Subject Classification: 1) Partial Differential Equations, Navier-Stokes Equations, 35Q10;

2) Numerical Linear Algebra, Iterative Methods For Linear Systems, 65F10; 3) Fluid Mechanics, Compressible

Fluids, General, 76N10.

Key Words: 1) Aerodynamic Sensitivity Analysis; 2) Navier-Stokes Equations; 3) Automatic Differentiation;

4) Linear Equation Solving In Incremental or Correction Form

ProposedRunningTitle:Aerodynamic Sensitivity Derivatives

Mail proof to:

Professor Arthur C. Taylor, rlI

Dept. of Mechanical Engineering

KDH 238

Old Dominion University

Norfolk, Virginia 23529--0247

Abstract

The straightforward automatic-differentiation and the hand-differentiatod incremental iterative methods are

interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise,

discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm

of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all

complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations

for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that

large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint

variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two

for which additional systems are solved, the equations and solution procedures are analogous to those for the first-

order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with

software tools such as automatic differentiation, because of the extreme complexity and large number of terms.

First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent-

flow example; both geometric-shape and flow-condition design variables are considered. Several methods are

tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order

derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the

best hand-differentiated method; for six independent variables, it is at least two to four times faster than central

finite differences and requires only 60% more memory than the original code; the performance is expected to

improve further in the future.

1.0 Introduction

The use of advanced computational fluid dynamics (CFD) analysis cedes in multidisciplinary design opti-

mization (MDO) studies and applications via sensitivity analysis requires the efficient and accurate calculation

of individual-discipline sensitivity derivatives (SD). The incremental iterative method (IIM) was proposed and

demonstrated to provide such first-order (FO) SD from a two-dimensional (2-D) thin-layer Navier-Stokcs code

(TLNS) for both geometric (shape) and nongeometric (flow) design variables in Refs. [I] and [2]. The IIM allows

accurate, consistent discrete SD to be obtained with computational efficiency (with respect to both computational

time and memory requirements). Furthermore, the IIM also allows the use of approximate matrix operators for

further efficiency, parallelization, or robustness, etc. Results for FO SD from an IIM for three-dimensional (3-

D) Euler codes (Refs. [3]-[5]) have also been presented. In all of the above cited works, the discretized flow

residuals were differentiated by hand (also called the quasi-analytical (QA) method) and assembled to obtain the

FO SD by an IIM.

In the present study, numerical results are given for the application of automatic differentiation (AD) (Refs.

[6]-[8]) to obtain FO aerodynamic SD from an IIM for the same 2-D TLNS cede and sample problems studied

in Ref. [1]. The numerical results are compared on the basis of accuracy and computational time and memory.

Previous FO SD from hand-differentiated QA IIM and central finite-difference (CD) methods (Ref. [1]) arc

compared with newly obtained AD results for both the straightforward and IIM form applications. This latter

approach is new; previous straightforward applications of AD to advanced CFD codes (Refs. [9]-[12]) did not

result in IIM forms, as will be discussed subsequently. This problem was recognized and noted in Rcfs. [2] and

[9]-[11], in which the use of AD in IIM forms was proposed.

An additional focus of this study is the development of the basic equations for computing second-order

(SO) discrete aerodynamic SD, which yields four methods; where applicable, the incremental iterative forms of

these equations are also given. Numerical results arc shown for the same 2-D sample problems for which FO

SD are calculated.

The SO aerodynamic SD are of interest for several reasons. For example, aerodynamic stability derivatives are

required by the controls discipline as an input; therefore, inclusion of controls in a gradient-based MDO procedure

means that the sensitivities of stability derivatives are needed, which are SO SD. Secondly, in constructing function

approximations for nonlinear flow behavior, the expansions that use FO derivative information are only of limited

4

usefulness.ForN independent variables D, the truncated Taylor series

f(D+AD) __ f(D)+_ 0f AD- (1.1)

i=1 0Di J

8af
is a linear approximation. If the derivatives _ are available, then

f(D+AD) _ f(D) + afAD

i=1 aDi J

1_ __a2f ADjADk (1.2)
+ _ 8DkOD i

j=l k----1

may exhibit much of the nonlinear behavior of f. Thirdly and more importantly, SO optimization techniques

can be employed.

The remainder of the paper is organized as follows: Section 2 discusses first-order derivatives, including

development of the equations, methods, results (tabulated in Appendix A), and conclusions. Section 3 discusses

second-order derivatives, including development of the equations, methods, results (tabulated in Appendix B),

and conclusions. Section 4 presents a summary and final conclusions. For the convenience of the reader, the

acronyms used throughout the paper are collected in Appendix C.

2.0 First-Order Sensitivity Derivatives (FO SD)

2.1 Basic Equations and Incremental Iterative Forms

A brief review is given of the basic equations of FO discrete aerodynamic sensitivity analysis; also included

is the incremental iterative form for solving the equations. A thorough discussion is given in Refs. [1] and [2].

Reference [13] provides an overview of recent advances in FO sensitivity analysis for CFD.

After discretization, the nonlinear, multidimensional steady-state governing equations of fluid flow and the

boundary conditions are approximated as a large system of coupled nonlinear algebraic equations as

R = R(Q(b),X(b),b) = 0 (2.1)

where Q isthe vectorof fieldvariables,X isthe computationalgrid,and b isthe vectorof independentinput

(design)variablcs.Similarly,the vectorof aerodynamicoutputfunctionsF isdependent on Q, X, and b as

F = F(Q(b), X(b), b) (2.2)

In Eqs. (2.1) and (2.2) and all subsequent equations, all applicable terms are evaluated at the steady-state flow

conditions, unless explicitly superscripted with an appropriate iteration index.

i

2.1.1 The Direct Differentiation (DD) Method. Differentiation of Eqs. (2.2) and (2.1) with respect to b

yields the respective matrix equations

OF , 0Fx, aF
DF' -- _-QQ + 0-X + a"'b (2.3)

aR , aRx, aR = 0 (2.4)
R'= _--_q + ax + a-g

dR. d__q. and Xl_ dXwhere Die' --: -_; R'------ -d-K' q'-- db, db"

The matrix DF' contains the sensitivity derivatives of interest; the superscript D denotes that they are obtained by

the DD method. The matrix Q' contains the sensitivity derivatives of the field variables; the matrix X' contains

the grid-sensitivity terms (which typically are obtained by differentiating the grid-generation code). The very large

linear system (Eq. (2.4)) is solved first for Q' so that the SD oF' can be calculated subsequently.

2.1.2 The Adjoint-Variable (AV) Method. As an alternative to solving Eq. (2.4) for Q', an adjoint-variable

matrix A is introduced to combine Eqs. (2.3) and (2.4); the matrix A is then specified to ensure that the resulting

coefficient of Q' vanishes. The AV method becomes

0Fx, aF {ORx, OR)*r' - _ +Tg+AT{,_--_ +Tg. (2.5)

G ---- \aq/ + \aq/ =

The matrix AF' contains the sensitivity derivatives of interest; the superscript A denotes that they are obtained

by the AV method. However, DF, AF, _- d-b"dFThe very large linear system of Eq. (2.6) is first solved for A in

order that the SD AF' can be calculated subsequently.

The dimension of b and, thus, the column dimension of Q' is the number of design variables (NDV); the

dimension of F and, thus, the column dimension of A is the number of output functions (NOF). Therefore, if

the NDV is greater than the NOF, then the solution of Eq. (2.6) is likely to be computationally less expensive

than that of Eq. (2.4). (It will definitely be less expensive for a direct-solution procedure; iterative methods are

normally required, however, because of the extreme size of the coefficient matrix.)

2.1.3 The Incremental Iterative Solution Method. As an alternative to pure Newton iteration, typical CFD

codes employ what is sometimes called quasi-Newton iteration, which is an IIM, to solve the nonlinear flow

system (Eq. (2.1)); this can be expressed as

OR*AQ* = R n (2.7)
aq

Q.+I =Qn+AQn ; n= 1,2,3 (2.8)

.

The left-hand-side (LHS) coefficient matrix operator _ of Eq. (2.7) is, in many CFD codes, at best only a

rough approximation to the exact Jacobian matrix operator that is associated with true Newton iteration. Thus,

Eqs. (2.7) and (2.8) are intended to represent a broad spectrum of implicit and explicit iterative algorithms that

are common to CFD software.

Numerous computational difficulties are associated with solving the FO linear sensitivity equations in the

standard form given by either Eq. (2.4) (the DD method) or Eq. (2.6) (the AV method); these difficulties are

documented, for example, in Refs. [1], [14]. Previous studies (Refs. [1]-[5]) have shown that these computational

difficulties can be overcome (at least in part) by iteratively solving these equations in incremental iterative form.

For the DD method (F-xl. (2.4)), the IIM is

OR A _m R,m
- q = (2.9)

Q,m+1 = Q,m.l. AQ,m; m = 1,2,3,... (2.10)

where

_R ,m 8R x, _R (2.11)
R'm=b--_q +ax +a--b-

InEq. (2.9),theLHS coefficientmatrix_ representsany convergent,computationallyconvcnientapproximation

of theexactJacobianmatrix.Inparticular,the identicalapproximateLHS operatorand algorithmthatare used

tosolvethe nonlinearflow equationscan alsobe used to solvethe linearsensitivityequations.Comparison of

Eqs. (2.7)and (2.8)withEqs. (2.9)and (2.10)revealsthatthe sensitivityequationsarc solvedby interchanging

theright-handside(RHS) ofEq. (2.7)with thatofEq. (2.9)and "freezing"tiacLHS operatoratthe steady-state

value. At convergence,the accuracy of the SD isnot compromised ifthe terms on the RHS of Eq. (2.9)are

evaluatedconsistently.The use of theIIM isalsoapplicableinthe AV mcthod to solveEq. (2.6);in thiscase,

@R
the LHS operator_ must be transposed.The IIM forthisbecomes

A m+z = A m + AAm; m = 1,2,3,... (2.13)

where

and the superscript T indicates a matrix transpose.

2.2 Applications of ADIFOR

This section describes different applications of AD to assist in the efficient, accurate calculation of FO SD

from advanced CFD codes. In particular, the AD precompiler software tool ADIFOR (.A_.utomalic Differentiation

of FORtran) of Refs. [9] and [15]-[18] is used in this study. The ADIFOR precompiler tool is applied to the

original FORTRAN program source code from which the SD are to be obtained; the output of this precompiler

procedure is a new, differentiated source code, which upon compilation and execution will compute (exactly)

the numerical value(s) of the derivative(s) of any specified output function(s) with respect to any specified input

variable(s). In addition, the new program will perform the function evaluations of the original code.

2.2.1 Black-Box Applications. Application of ADIFOR to FORTRAN coding of an iterative solution algo-

rithm (e.g., CFD software) produces a similar iterative algorithm for computing the exact derivatives. However,

as noted in Refs. [2], [9]-[13], and [19], this latter iterative algorithm obtained from a straightforward "black

box" (BB) AD application may be neither computationally efficient nor robust; in general, it is not in incremental

iterative form, even if the original solution algorithm was in that form. The previous BB applications of ADIFOR

to advanced CFO codes (Refs. [9]-[12]) produced iterative algorithms for SD calculations in which the entire

flow-solution algorithm is differentiated.

From the discussion in Refs. [9] and [10], this process whereby the SD are iteratively calculated (following

the BB use of AD) can be represented conceptually by first combining Eqs. (2.7) and (2.8) (i.e., the basic CFD

flow-solu_n procedure) to yield

Qn+l = Qn _ pn Rn; n = 1,2,3,... (2.15)

where pn -- . Differentiation with respect to b then yields the result

Q_n+l = QIn _ pn R,n _ p_n Rn; n = 1,2,3,... (2.16)

In contrastwith Eq. (2.16), a hand-differentiated (HD) implementation of the DD method for FO SD can be

expressed by combining Eqs. (2.9) and (2.10) (an IIM) to yield

Q,m+l= Q,m pRtm ; m=1,2,3 (2.17)

Symbolically, of course, Eqs. (2.16) and (2.17) are equivalent only at convergence of the flow solution, when R"

vanishes (which also results in the disappearance of p'nR"), and pn becomes constant at the steady-state value.

Computationally, however, Eq. (2.17) is potentially much more efficient for several reasons which are listed below.

1) If the AD-enhanced CFD flow code is executed after the original code has produced a well-converged flow

solution, then the convergence rate of Eq. (2.16) might be accelerated somewhat. However, differentiation of the

complete CFD solution algorithm and repeated calculation of its derivatives (represented by p,n in Eq. (2.16)),

although unwanted and unnecessary, is not avoided. The computationally wasteful, repeated calculation of p_n

is likely a significant part of the total work represented by Eq. (2.16).

2) In Eq. (2.17), the term P is constant. Thus, in principle, only a one-time calculation is required; thereafter, it

should be stored in memory and reused repeatedly for all iterations. (For 3-D CFD calculations on large grids, the

computer memory of currently available supercomputers might be too small to store the complete P; obviously,

in this case P cannot be frozen in memory and reused.) In Eq. (2.16), however, pn (the CFD flow-solution

algorithm) is updated at each iteration.

3) The AD-enhanced CFD code will continue to iterate on the solution to the nonlinear flow equations, regardless

of whether or not they are already well converged.

4) With the BB application of AD represented by Eq. (2.16), all parts of the term R 'n are forced inside the

iteration loop and, thus, are calculated at each iteration. However, for the HD IIM represented by Eq. (2.17), most

of the terms of R 'm can be placed judiciously outside the iteration loop; from Eq. (2.11), only the matrix-matrix

(_)(Q,m) must be inside this 10op.multiplication operation

5) The "vectorization" prop_des of the AD-enhanced CFD code (Eq. (2.16)) for efficient operation on Cray-

type computers may be severely degraded in comparison with those of the original code. In addition, depending

on the approach used in the application of the ADIFOR tool and on how many SD are calculated simultaneously,

the computer memory requirements could become excessive.

Certain BB applications of AD, discussed subsequently, may enable the complete elimination of the second

computational difficulty discussed above and greatly limit the impact of the first. Some CFD codes, particularly

thoseof the2-Dimplicittype,areequippedwithanoptional computational-work (CW) saving strategy; it is

known as the "frozen Jacobians" (FJ) option. This scheme takes advantage of the fact that as the quasi-Newton

flow-solution method of Eqs. (2.7) and (2.8) converges, the LHS operator of Eq. (2.7) becomes approximately

constant. The FJ option provides the capability of freezing (not updating) these terms (represented by pn in Eq.

(2.15)) for a specified number of iterations; the result is typically a large savings in CW per iteration.

For an AD-enhanced CFD code with the FJ option (henceforth known as the BBFJ method), the potential for

CW savings is very large (i.e., proportionally far greater than for the original CFD code because the unnecessary

repeated update of pn and of the unwanted p,n can be avoided in Eq. (2.16)). The AD-enlaanced CFD code

is simply started with a well-converged flow solution, and the FJ option is set to activate for all iterations (aRer

the first iteration).

With the BBFJ strategy, clearly the first computational inefficiency (discussed previously) is reduced

significantly, but not eliminated. It is suggested that further improvements to the BBFJ method might be made

by editing out these terms (i.e., P'"R n of Eq. (2.16)) from the AD-enhanced code. If successful, this process

could also have significant collateral benefits with respect to reduced computer memory requirements and restored

vectorization. These improvements are aimed at making the BB method (Eq. (2.16)) more like the HD DD IIM

(Eq. (2.17)).

2.2.2 Incremental Iterative Applications. Earlier studies (Refs. [2] and [9]-[11]) have proposed that many

of the previously discussed computational inefficiencies associated with the BB application of ADIFOR to CFD

codes (T_. (2.16)) can be overcome (at least in part) by a more judicious application of ADIFOR. The goal of

this approach is that the resulting SD calculations are (more nearly) in the IIM form of a HI) application of the

DD method (Eq. (2.17)). Specifically, in the present study, ADIFOR is applied to differentiate only the RHS

of Eq. (2.7), which is the residual R. of the nonlinear flow equations (Eq. (2.1)). These differentiated terms are

assembled on the RHS of the IIM of Eq. (2.9); thus, the resulting scheme is essentially that expressed by the

efficient Eq. (2.17) which is an IIM. The construction of the required derivatives is now via AD rather than HD.

This scheme is henceforth known as the ADII method; it should effectively combine an existing, highly efficient,

iterative solution algorithm with a fast, accurate, reliable procedure for constructing all required terms.

The ADII strategy will bypass the most obvious computational inefficiencies of the BB strategy. For example,

the unnecessary construction and repeated evaluation of the term P'" in Eq. (2.16) is completely avoided, and the

inverse approximate operator P is not updated at each iteration (at least in principle). Evaluation of all derivative

10

8R (_,"m _R f'_/m
terms except OQ _ can be placed outside the iteration loop; however, note that the liD evaluation of b-ffQ"_

would be less costly (recall that only the explicit matrix-matrix multiplication is then required at each iteration).

Although the repeated calculation of R" is not avoided, the repeated full iteration on the nonlinear flow equations

does not continue with the ADII scheme. Despite these improvements, some important issues remain in regard

to the vectorization properties and computer memory requirements associated with the ADH procedure. These

issues are partially addressed herein; see Ref. [20] for expanded discussion.

A more detailed discussion is provided in Ref. [20] of how ADWOR is applied to implement the ADII

scheme; only a few key highlights are mentioned here. Most importantly, this scheme must be assembled with

great care to ensure that contributions to the SD from the boundary conditions are taken into account fully;

failure to do this will result in severe errors in the calculated SD (Ref. [21]). In the present study, this involves

separate applications of AD (i.e., applications to a master boundary-condition subroutine and applications to a

master interior-cell-residual subroutine). Furthermore, these applications of AD are further subdivided to ensure

the terms that must be calculated inside the iteration loop (i.e., 0Rn_mab--_", j Can be separated from the remaining

terms that should be placed outside the loop. Finally, the AD versions of these subroutines are then carefully

interwoven to function as the ADII scheme*.

ORris _Ryt
One important and useful feature of the ADIFOR system for AD is that terms of the type b-_'-, or ox _-

(recall Eqs. (2.4) and (2.11), for example) are calculated without the explicit calculation of the very large Jacobian

matrices _ or _-_, respectively, and without explicit postmultiplication by the matrices Q' or X', respectively.

Of course, the AD-enhanced code, which can evaluate these complete expressions, will require increased memory

over that of the original code. However, this increase is approximately equal only to the memory of the original

code times the column dimension of Q' and X'. For the present application, this is NDV, which is the dimension of

b (or the dimension of that fraction of b for which SD are to be concurrently calculated in the ADII method). The

final result is an extremely fortuitous conservation of computer memory; without this conservation of memory,

given the overwhelming size of _ and _r-_, the application of ADIFOR to advanced CFD codes would be

infeasible.

In contrast with the preceding discussion, expressions of the form (_)TA (recall Eqs. (2.6) and (2.14)of

the AV method) cannot currently be evaluated via applications of ADIFOR without the explicit calculation of

the very large transposed Jacobian matrix (_--_)t and the postmultiplication of it by the matrix A. For modern

* This demonstration of ADll is for a single grid code; the ADII scheme is currently under development for n multigrid, multibiock code.

11

CFDcodes, this step is completely infeasible. Unfortunately, ADIFOR cannot be considered to assist in the

construction of these terms in the IIM for the AV scheme (Eq. (2.14)); nevertheless, it can be used to construct

the remaining terms (Eq. (2.5)).

2.2.3 Turbulence-Modeling Applications. The presence of turbulence modeling presents a challenge in the

calculation of aerodynamic SD. Practically speaking, the task of differentiating the turbulence-modeling terms

to include their influence in the Jacobian matrices and other terms of the DD and AV methods is too complex

to do by hand. Symbolic manipulators could be used to differentiate the algebraic equations involved, with

program-flow control by macros, and then to generate SD code; however, ADIFOR has the advantage of being

able to directly work with the existing FORTRAN source code, with automatic program-flow control and global

dependency checking.

In the earlier study of Ref. [1], a HD IIM version of the DD and AV schemes was created to compliment a 2-D

TLNS CFD code. (Henceforth, these two HD schemes are referred to as the DDII and AVII methods, respectively.)

These two schemes were shown to generate very accurate SD for constant-viscosity laminar flow but produced

significantly erroneous SD for turbulent flow; this discrepancy resulted because the turbulent viscosity terms (from

the Baldwin-Lomax algebraic model (Ref. [22]) were not differentiated by hand because of their complexity. In

the present study, ADIFOR is applied to correct this deficiency. That is, ADIFOR is applied to differentiate

the turbulence-modeling terms only, and the results are incorporated as a correction in the HD SD code. This

correction is applied to the DDII scheme only, which results in a method known henceforth as DDI1TC. This

correction could not be added in full to the AVII scheme, for reasons discussed subsequently; therefore, no

AVIITC strategy currently exists.

Conceptually, the AD correction for the viscosity terms is added to the DDII scheme as

0F (OF),, 0F0V (2AS)aQ ___.. + OVOQ

OF (0F_ 0FOV (2.19)b-g = T_ + ov ox

or (or)v orav cz.2o)

where V is a vector of viscosity terms (including the turbulent viscosity). The subscript V in the above indicates

differentiation within the term with V held constant; thus, terms with this subscript represent the original terms

of the uncorrected HD code. Substitution of the above into Eq. (2.3) of the DD method results in

/OF,, (aF_x , (aF_ aFv, (2.21)+ + ov

12

where

dV 0V , 0Vx, 0V
V' -- db 0X 0b-- = _--_q + +-- (2.22)

Similar manipulations applied to Eq. (2.4) of the DD method yield

/ORN , /SRN , (OR_ 8RV,= 0 (2.23).'= t, LQ + -+-+-+ ,,v

Clearly, the viscosity-derivative correction terms to be added in Eqs. (2.21) and (2.23) arc^°vroy,,,+ and ov--ORv+,

8F 8R
respectively.In thepresentstudy,_V and _V areconstructedby hand, and V' isconstructedviaADIFOR. The

threeterms ofV' on the RHS of F_,q.(2.22)areconsa'uctedwith separateapplicationsofADIFOR so thatthe

OV f.tt OV f._t OV yt
terms oq _ can be separatedfrom theothersand placedinsidetheiterationloop.The terms_qq..,and b-g+. are

assembledwithouttheexplicitcomputationoftheJacobianmatrices_ and ovb-_. Thus, these terms are evaluated

without an excessive expansion of the computer memory, as discussed previously in regard to the AD-assisted

@RcIt and 0Rytevaluation of the terms OQ_ _++"

The KM for solving Eq. (2.23) becomes

[ff-ltL'_ ,m Rim R_,m 0Rv,m
-[_T_),_ q = = + av C2.24)

Qtm÷l = Q_m+ AQ,=; m = 1,2,3,... (2.25)

where

R_ m /0R\ +m {OR'_ X, OR

V, m 0V ,m 0V x, 0V
= 3-_ q +ox +o--K

(2.26)

(2.27)

OV i._lm
In the turbulent sample problem of this study, the term _qq_., was a computationally expensive addition

to the iteration loop, even after the ADIFOR-generated code was extensively massaged to restore vectorization

and other features related to efficiency. Initially, the computational cost per iteration was about 3.62 times more

costly per iteration when the correction was switched on, although the overall rate of convergence was not affected

OV f'llm
grcatly.A CW savingstrategywas proposed and tested,where theterm oq "_ of Eq. (2.27)was frozen(not

updated)insidetheiterationloop fora specifiednumber ofiterations.For 10 frozeniterationspriortoeachupdate

ofthisterm,the overallincreaseinaverageCW per iterationdue tothisturbulence-modelingcorrectionwas about

13

26.6 percent (compared with the CW per iteration with the correction switched off) with no major impact on the

rate of total error reduction. Furthermore, the correction had little impact on the computer storage requirements.

The unsuccessful attempt to correct the AVII scheme for turbulent flow yielded the following formulation:

AF , (or'_x, OF aR

(o, ,o ,,ov ov)+ _ + _ _) t,_--_x + _

_T

_(aR G- m . ..29)
kaq_ = Gv+GTo

A m+l = A m + AAm; m = 1,2,3,... (2.30)

where

o_ = \OQ,_, +

G_e = _ [_,aV/ + b-V

All parts of the turbulence correction can be constructed easily via ADIFOR, except G_c (Eq. (2.32)). The

present version of ADIFOR can construct this term only by explicitly computing the large matrix (o°---_)"r and

postmultiplying it by the terms shown; as discussed previously for the matrix-matrix product (_)TA, this

procedure is not feasible for modern CFD codes.

2.2.4 Vectorization and Memory Considerations. Prior to the compilation and execution of any AD-

enhanced FORTRAN source code, a parameter gp is specified within the code. For each execution of the

code, this parameter determines the number of independent (design) variables with respect to which derivatives

are concurrently computed. Thus, the user has the following options:

1) Compute all required derivatives by executing the AD-enhanced code once for each independent variable

(i.e., NDV code executions with gSp$ = 1).

2) Compute all required derivatives by executing the AD-enhanced code only once (i.e., one code execution,

with gp = NDV).

3) Set gp such that 1 < gSp$ < NDV; this requires multiple executions (less than NDV) of the AD.enhanced

code, where subgroups of gSp$ derivatives are concurrently computed for each code execution.

14

Thespecified value of gSp$ has a significant impact on computational requirements in several critical ways.

With respect to memory, for example, recall that the memory increase of the AD-enhanced code is approximately

equal to gp times the memory of the original code; thus, if this parameter is too large, the memory requirements

of the code could be excessive.

The AD-enhanced code retains all do-loops and function evaluations of the original code. Within each original

do-loop is inserted one or more new innermost do-loops; the length of each new do-loop is gp (e.g_, DO 10

I = 1, gp). Inside these new loops, derivative calculations are made. The presence of these new innermost

do-loops has a profound impact (frequently negative) on the vectorization characteristics for performance on

Cray-type computers:

1) The do-loops of the original code, which previously vectorized, will no longer be vectorized in the

AD-enhanced version. An exception to this is when gSp$ < 5; the "aggressive" Cray compiler option will

automatically "unwind" the new innermost loops and may restore the vectorization of the original loops, complete

with the derivative calculations.

2) For gSp$ > 6, vectorization of the original loops is not recovered, but with the aggressive compile option,

the new innermost loops are vectorized. Nevertheless, overall code performance remains poor on Cray computers

unless gp is large enough that the vector lengths become sufficiently long for efficient execution on these

machines. At the same time, however, for large gp the computer memory requirements of the AD-enhanced

CFD software can become excessively large.

Apart from the vectorization considerations discussed above, the number of arithmetic operations per

concurrently computed derivative is always decreased as gp increases. This happens because, for each execution

of an AD-enhanced code, part of the derivative calculations occur outside of the innermost loops, and the results are

reused for all derivative calculations within the innermost loops. Furthermore, the complete function evaluations

of the original code are performed.

The sample problems illustrate the consequences discussed previously; the results from these sample problems

are to be given. For example, (except when gp is large) gp = 5 produces the highest computational efficiency

per design variable, and this efficiency is progressively reduced as gp is reduced to 1. A particularly inefficient

case is that of gp = 6 (thereafter efficiency gradually increases as gp increases). In the case with NDV = 6,

rather than perform one code execution with gp = 6, two code executions, each with gp < 6 (e.g., the first

execution with gSp$ = 5 and the second execution with gSp$ = 1), were significantly more efficient.

15

2.3 Computational Results: FO SD

Two sample problems axe considered here; they are identical in every way to those studied previously in

Ref. [1], where a more complete description is given. The first example is low-Reynolds-number (Re = 5x 103)

subsonic (Moo = 0.6), constant-viscosity laminar flow over an isolated NACA 1406 airfoil at an angle-of-attack,

a = 1.0'. The second example is similar, except the flow is a high-Reynolds-number (Re = 5x 106) transonic

(Moo = 0.8) turbulent flow. Flow calculations are made on a C-mesh with dimension 257x65 (circumferential

x normal direction); the clustering of points near the airfoil's surface was tighter for the high-Reynolds-number

example. Grid sensitivity derivatives were produced with a unique scheme that was first reported in Ref. [14] and

was subsequently applied to these sample problems in Ref. [1].

The CFD code applied here (and in Ref. [1]) solves the 2-D TLNS equations with an upwind, cell-centered

finite-volume formulation with a higher order accurate evaluation of all fluxes and the algebraic turbulence

modeling of Baldwin and Lomax (Ref. [22]). The code employs an implicit, spatially split approximate-

factorization flow-solution algorithm. Also available is the FJ option (discussed previously), where the entire

implicit operator (i.e., the complete set of LU-factored block-tridiagonal coefficient matrices) is stored in memory

and repeatedly reused (not updated) for a specified number of iterations.

As in Ref. [1], the FO SD of three aerodynamic output functions CL, Co, and CM (the coefficients of

lift, drag, and pitching-moment, respectively) are calculated with respect to three geometric shape variables T,

C, and L (maximum thickness, maximum camber, and location of maximum camber, respectively) and with

respect to three flow variables a, Moo, and Re (each defined previously). Therefore, F = (CL, CD, CM) r and

b- (T, C, L, a, Moo, Re) T. The SD are computed with a wide variety of different methods, and the results are

compared on the basis of accuracy and computational time and memory.

2.3.1 Accuracy Comparisons. The FO SD are calculated for both sample problems with the methods CD,

DDII, AVII, ADII, and BB; in addition, the DDIITC scheme is applied only to the turbulent example (because

it is unnecessary for the laminar case). The application of the CD, DDII, and AVII schemes to these problems

repeats the work of Ref. [1]; the manner in which these schemes are applied is discussed in depth in Ref. [1]. Of

course, the DDIITC, ADII, and BB schemes are the methods for which derivatives are calculated via applications

of ADIFOR, either in part or in total (depending on the scheme).

16

TheSDthatwerecalculated are presented in Table (A.1) (in Appendix A) for the laminar example. The

actual numerical values of the SD are given for the CD method. For the other methods, SD ratios are given (i.e.,

each SD has been normalized by the respective SD calculated via the CD scheme). Table (A.1) clearly shows

excellent agreement among all these methods, as expected.

The SD for the turbulent example are presented in Table (A.2). The actual SD are shown for the CD

scheme; the remaining cases are shown as SD ratios. As expected, this table shows excellent agreement within

the DDI1TC, ADII, BB, and CD methods. The results for the DDII and AVII methods do not agree well (for

some SD) with the other schemes because of the turbulence-modeling terms, as discussed previously herein and

in ReL [1]. The erroneous results for the DDII and AVII schemes agree extremely well with each other, however,

because the two are algebraically equivalent; for this reason, the results for these two methods are shown as a

single result in Table (A.2).

The good accuracy and agreement in the preceding results is due in part to the very tight convergence

tolerances that were enforced on all calculations. The average total error was reduced to machine zero (a relative

reduction of approximately 12 orders-of-magnitude (OM)) in the initial flow solution and in all twelve flow

solutions that were required for the CD method (i.e., two solutions per design variable). Very small forward and

backward perturbations Abj= -1-5.0E---6 x bj are made to each design variable to ensure good accuracy with the

CD method. For each linear system that was solved to compute these SD, the error was reduced at least eight OM;

in each sample problem, this involved NDV = 6 solutions for the DDII, DDIITC, ADII, and BB methods, and

NOF = 3 solutions for the AVII scheme. Of course, these tight convergence tolerances are far more restrictive than

would be required in ordinary engineering practice and greatly increase the computational cost of the calculations.

2.3.2 Computational Time and Memory Comparisons. In this section, some of the methods discussed

in the previous section are further subdivided; these subdivisions have little or no impact on the SD that are

calculated but can have a significant impact on the total computational efficiency of the method.

The CD method is subdivided into two methods, depending on whether or not the FJ option is activated;

when active, 10 iterations of Eqs. (2.7) and (2.8) are specified prior to each update of the LHS operator. The

methods without and with the FJ option are referred to as the CD and CDFJ methods, respectively.

Similarly, the BB method is subdivided into two methods, depending on whether the FJ option is activated

(the BBFJ scheme) or not (the simple BB scheme). These two BB methods are further subdivided into additional

17

m

methods, depending on how the parameter gp is applied. Two options were tested: first, all SD were calculated

with a single execution of the AD-enhanced code (i.e., this implies gp = NDV = 6); and second, two executions

of the code were made---the first with gp = 5 and the second with gp = 1. From these subdivisions, the

methods are BB(6), BB(5+I), BBFJ(6), and BBFJ(5+I). Execution of the AD-enhanced code is started for all of

these BB-type methods after the original code has produced the fully converged flow solution. (Recall that the

fully converged flow solution is required at start-up for the latter two methods.)

The ADII scheme also is subdivided into two methods, depending on the application of gSp$ to yield the

ADII(6) and ADII(5+I) methods. For turbulent flow, the DDI1TC method is further subdivided according to

whether or not the option to freeze the turbulence-correction terms is activated. The terminology DDIITCFR

indicates that this option is activated. (Ten frozen iterations are specified for each iteration that updates these

terms.) The notation DDIITC indicates the option is not activated.

Comparisons of the time (total CPU time) are shown in Table (A.3) for both the laminar and turbulent sample

problems; all calculations are performed on a Cray-YMP computer; results are given in sees. All reported timings

do not include the cost of the initial flow solution. Note that a superscript * in the tables indicates estimated

results, based on results in Table (A.4) which shows a comparison of the computational times (the CD and CDFJ

methods are excluded) in CPU time per iteration per linear system solved. The results from Table (A.3) for

the methods ADII(5+I), BB(5+I), and BBFJ(5+I) have been separated in Table (A.4) to compare the individual

effect of gp = 5 and gp = 1.

The total memory requirements for the different methods are compared in Table (A.5), where the results

are given in Mega-words (Mw); no difference occurs in the results for the laminar and turbulent examples in

this table. The computer memory requirements for the ADII scheme are less than that for the BB approach,

particularly if the original flow code is of the type that uses a large amount of memory for storage of the terms

of the LHS operator; recall that these terms are not differentiated with the ADII scheme, which results in a

significant conservation of computer memory.

2.4 Conclusions: FO SD

Conclusions based on the calculations for FO SD are enumerated subsequently.

1) The HD IIM schemes, although presently the most efficient, are very difficult and time consuming to construct

accurately, even for relatively simple CFD codes. For more complex codes with features such as turbulence

18

modeling,etc.,this approach is not feasible. ADIFOR is a reliable tool for the quick construction of accurate

source code to evaluate all or parts of the SD from complex CFD codes, but straightforward BB application of

ADIFOR to CFD codes can be slower than even the CD method and require substantially more memory than

the original code.

2) ADIFOR can be used successfully to create corrections to HI) SD codes, where only relatively small, previ-

ously undifferentiated parts of the original flow code (such as turbulence-modeling subroutines) are differentiated

via ADIFOR. These corrections can be very costly with respect to the efficiency of the HD SD code, as seen

in Tal_les (A.3) and (A.4) for the turbulent-flow problem; the cost in computer memory is negligible, as shown

in Table (A.5).

3) For all applicable methods, the computational penalty associated with the turbulence-modeling terms (all

constructed via ADIFOR) is significant and disproportionately high. Detailed comparisons of the laminar and

turbulent timings (for a given method) shown in Table (A.4) reveal this penalty. The disproportionate cost is

highest for the most efficient method and also for the application where gp = 1. The AD-correction for the

turbulence-modeling terms in the DDIITC method represents an inefficient (gp = 1) application of ADIFOR;

the inordinately large computational cost of this turbulence correction is thereby explained.

4) The ADII scheme is not as efficient.computationally as the HI) RM schemes but is more efficient than all

other methods tested. For example, depending on the particular sample problem and application of gp, the

ADII scheme produces computational improvements by a factor which varies from approximately 6 to 15 when

comparisons are made with the simple BB scheme; similar comparisons to the BBFJ scheme yield factors which

vary from approximately 1.4 to 1.7. The most efficient ADII results were approximately two to four times more

efficient than the results from the CDFJ scheme,--even more efficient compared with the CD method.

5) The ADII scheme is not as easy to implement as the BB methods. For example, particular care must be

taken to ensure that the contributions from the boundary conditions are properly taken into account. However,

when compared with the HD approach, the ADII scheme can be implemented easily with very accurate results,

even for very advanced CFD codes. For example, the time required to develop the source code for some of these

different methods is estimated: HI) IIM (DDII, AVII, etc.)----six man-months to two man-years, or even longer,

depending on the complexity of the flow code; ADII---about one man-week; BB--about one man-day.

6) The BBFJ strategy is no more difficult to implement than the simple BB approach, if the original flow code

is equipped with the FJ option. A very large increase is noted in the computational efficiency (compared with the

19

simpleBBstrategy)whenthisoptionis activated;this improvement was by an impressive factor which varied

from approximately four to nine, depending on the particular example problem and application of gp. The

BBFJ strategy is not as efficient as the ADII scheme with respect to computational time or memory. However,

with relatively minor code modifications, the method possibly could be made to function with nearly the efficiency

of the ADII scheme. Therefore, when the FJ option is available, the BBFJ scheme is the simplest method to

implement which also maintains reasonable efficiency (compared with the CDFJ scheme in particular); otherwise,

the necessary extra effort should be invested to implement the ADII scheme.

7) For the BB, BBFJ, and ADII schemes, the computational cost in terms of CPU time and computer storage is.

very sensitive to the value selected for the parameter gSp$; the effect can vary significantly for different machines.

The significance of gp is critical for a large NDV; on Cray computers with the aggressive compile option, the

choice of gp = 5 seems to provide the most efficiency in terms of CPU time per iteration per linear system

solved, with a manageable increase in memory.

8) Currently, ADIPT)R cannot be applied to construct the AV method in total; this limitation is a serious

consideration because great potential exists for efficiency with the AV scheme when NDV is much larger than

NOF.

3.0 Second-Order Sensitivity Derivatives (SO SD)

3.1 Basic Equations and Incremental Iterative Forms

A brief derivation is presented of the basic equations of SO discrete aerodynamic sensitivity analysis. The

result is four methods, denoted as (1) DD.DD, (2) AV.DD, (3) DD.AV, and (4) AV.AV; this notation roughly

parallels the derivation and description given in Ref. [23] for SO shape sensitivity analysis applied to linear

heat-conduction problems. In addition, the incremental iterative forms are given for solving the additional large

linear systems that result from Methods (1) and (2).

For convenience and subsequent notational clarity, the key equations for the FO derivatives are repeated,

where only the terms for the i-th aerodynamic output function (Fi) and for the j-th design variable (bj) are given

here. Recall the FO DD approach is

dFi 8Fi , 8Fi Xl 8Fi (3.1)
DF_;J ---- db-"_ ---- "_--QQJ + _ j + _j

dR 8R , cgRx: 8R = o 0.2)
= dbj- Qj + ax ' + ab__

2O

, dq; , dXwhere Qj - dbj X_ _= T_j" The FO AV approach is obtained by introduction of the adjoint-variable vector Ai

into the preceding equations to eliminate Q_; the result is

A,- dFi 0Fix! 8Fi Tf0RX! OR)v,;j= = ox ' + +A, Vox ' +
/0R_ z (0Fi? ----0

(3.3)

(3.4)

The following differential operator DO is defined for use in the derivations that follow.Dbk

D() = O() dQ + O() dX t- 0() (3.5)
Dbk 0Q dbk OX dblt Obk

Therefore, for example, comparison of this operator with Eqs. (3.1) and (3.2) yields, respectively,

D(Fi) =DF !.. D(R)

Ob i _;" Db---_ = R_ 0.6)

3.1.1 Method 1: DD.DD. An inspection of Eqs. (3.1) and (3.2) reveals explicit dependencies in each on Q_

and X_, in addition to Q, X, and b; this dependency is expressed as

--D r D # t t
dFi= Fi.j = Fi;j(Qj(b),Xj(b);Q(b),X(b),b)
dbj

dR
= It_ = R_ (O_(b), X_(b); q(b), X(b), b)

db i

(3.7)

0.S)

Differentiation of Eqs. (3.7) and (3.8) with respect to the k-th design variable bk yields, respectively,

D/DF! ._

d2Fi OFi qt, OFi X"
dbkdbi = _'_ j,k + _ j,k "{" Dbk

d2R 8R ,, 0Rx,, D(R;)

dbkdbj = _'_Qi,k + _-_ j,lt + Db--'-"_ = 0

0.9)

(3.1o)

where Q" d2¢L- " d2Xj,k ----- and X_, k _ •db_db i db_.dbi

In the precedingdifferentiation,thechain ruleisappliedterm by term toEqs. (3.7)and (3.8).Equations

(3.1)and (3.2)arcused toproduce the simplificationsthatresultin thefirsttwo terms of Eqs. (3.9)and (3.10),

respectively;cactiof the thirdterms isvery complex and has bccn simplifiedas a singleterm with the special

differentialoperatordefinedby Eq. (3.5).A more complete expansionoftheseterms isprovidedinRcf. [20].

21

Clearly, X_',k is the SO grid-sensitivity term, which is obtained in general (for geometric design variables

only) by twice differentiating the mesh-generation code. These SO grid-sensitivity terms vanish in the example

problems of the present study because of the linear nature of the particular remesh/grid-sensitivity scheme used.

(See Refs. [1] and [14].)

In all subsequent discussions, it is assumed that the complete Hessian matrix _ is desired for each output

function Fi. The DD.DD method requires a priori knowledge of the complete Q' matrix, which is obtained via

NDV solutions of the FO DD system (Eq. (3.2)). Thereafter, a maximum of (NDV) 2 solutions of the SO system

tl . l,-_tl _QII(F-xl. (3.10)), is required to determine all Qj,k, however, if the identity "_j,k-- k,j is exploited computationally,

then the minimum number of SO solutions is [(NDV) 2 + NDV]/2. Thus, the DD.DD method requires a minimum

total number of NDV + [(NDV) 2 + NDV]/2 solutions of very large linear systems.

The coefficient matrices of the FO DD system and the SO DD.DD system are identical; thus, when these

systems are cast in incremental iterative form, both could be solved with the identical approximate LHS operator

and algorithm that is also used to solve the nonlinear flow equations. The IIM for solving the SO Eq. (3.10) is

8-I_ , m (3.11)
- b--_,,Qj,_ = R_',_

Q,, m+l ,, m ,, m. (3.12)
i,k = Qi,k +AQj,k , m=1,2,3

where

aR s,m aRX,, D(R_)

R_',km = _--_Qi,k + _-_ i,k + Db----_
(3.13)

3.1.2 Method 2: AV.DD. An inspection of Eq. (3.3) reveals explicit dependencies on Ai and X_; in Eq.

(3.4) explicit dependence on Ai occurs but not on X_. Both equations depend explicitly on Q, X, and b. The

complete dependencies are expressed as

--A t _A , t b)dFi = Fi;j - Fi;j (Ai(b),Xj(b); Q(b), X(b),
dbj

Gi---- Gi(Ai(b); Q(b), X(b), b)

Oa4)

(3.15)

Differentiation of Eqs. (3.14) and (3.15) with respect to bk yields, respectively,

d2Fi (SRX. l 0R_?A, /aFi AT 8_R'_ x;Sk
db_j__ = IkcgX ' + --_iJ i;k + _'_'-_ + O.&/ '

D(^F,._
\ ';J/

+--
Dbk

O.16)

22

dGi /0R_ T , D(Gi)

-- =o (3.1,)

where A_; k ---- "_k"

In the preceding differentiation, the chain rule is applied to Eqs. (3.14) and (3.15). Equations (3.3) and (3.4)

are used to produce the simplifications that result in the first two terms of Eq. (3.16) and the first term of Eq.

(3.17); each of the last terms is complex and has been simplified as a single term with the operator defined by

Eq. (3.5). (See Ref. [20] for a more complete expansion of these terms.)

The AV.DD method requires a priori knowledge of the complete Q' and A matrices, which are obtained via

NDV solutions of the FO DD system (Eq. (3.2)) and NOF solutions of the AV system (Eq. (3.4)), respectively.

I °

Thereafter, NDV × NOF solutions of the SO system (Eq. (3.17)) are required to determine all At;k, the AV.DD

method thus requires a total of NDV + NOF + (NDV x NOF) solutions of very large linear systems.

The coefficient matrices of the FO AV system and the SO AV_DD system are identical; thus, when these

systems are cast in incremental iterative form, both could be solved using the identical approximate LHS operator

and algorithm (the transpose of that which is also used to solve the nonlinear flow equations). The IIM for

solving the SO Eq. (3.17) is

/_'R'_A ,m G,m
---- i;k

i;k --'[_i;k "_'_"_ i;k; m=_x,_, "b,'''

where

/0R_T ,m D(Gi)

G[;_ = _-_)A_; k + Dbk
(3.20)

3.1.3 Method 3: DD.AV. This method is derived by introducing an arbitrary adjoint-variable vector into the

DD.DD method to combine Eqs. (3.9) and (3.10); the adjoint-variable vector is specified so that the resulting

coefficient of Q_ik vanishes. The resulting DD.AV method is

D(DF, '_
d2Fi (OFi TOR\ ,, \ i;j/

db---'_-bj = _ OX "1",A i _'-_fl Xj,k q-" _k

(3.21)

23

Theadjoint-variablevector Ai in the derivation of Eq. (3.21) is identical to that of the FO AV method and is

found by solving the FO Eq. (3.4).

The DD.AV method requires no simultaneous solutions of large systems of linear equations that involve SO

terms (in contrast with the previous two schemes). An inspection of Eq. (3.21) reveals that the method requires

knowledge of the complete Q' and A matrices; they are obtained via NDV solutions of the FO DD system

(EXl. (3.2)) and NOF solutions of the FO AV system (F-zl. (3.4)), respectively. Thus, the DD.AV method requires

a total of NDV + NOF solutions of large simultaneous systems of linear equations; only the systems for FO

derivatives are solved.

3.1.4 Method 4: AV.AV. This method is derived by introducing a new, arbitrary adjoint-variable vector into

the AV.DD method to combine Eqs. (3.16) and (3.17); this adjoint-variable vector is specified so that the resulting

coefficient of A_;k vanishes. The resulting AV.AV method is

D(^F: .'h
d2Fi (aFi TOR'_x,, X =;J)

+ (q_)a-_) (3.22)
k

The adjoint-variable vector (which results in the disappearance of terms that involve AI; k) is seen in the derivation

of Eq. (3.22) to be Q_, which is found by solving the FO DD (Eq. (3.2)); detailed demonstration of this result

is given in Ref. [20].

No computational advantage is associated with the AV.AV method over the DD.AV method; in Ref. [20],

the two schemes are shown to be term-by-term equivalent. That is

,(R;)
i, _ = Ai _ (3.23)

D(^F:._ D(DF:._
k I;j] _ _, _u/ 0.24)
Dbk Dbk

The AV.AV method requires knowledge of the complete Q' and A matrices, which are obtained from solving

Eqs. (3.2) and (3.4), respectively. Thus, the AV.AV method requires a total of NDV + NOF solutions of large

systems of linear equations; only the systems for FO derivatives are solved.

3.1.5 Discussion. An analysis was made to determine which of the preceding four methods would be potentially

the least costly computationally by considering the of total number of large simultaneous linear systems that must

be solved to calculate the complete Hessian matrix _ for all Fi. The conclusions of this study are:

1) Methods (3) and (4) are computationally equivalent and are henceforth known as Method (3/4).

24

2) Method(3/4)is unconditionally less costly than Method (2); therefore, either Method (1) or Method (3/4)

should be selected, depending on conclusion 3, which is given subsequently.

_ll __Qll3) If the equality _'*{j,k-- kj is fully exploited, then Method (1) is less costly than Method (314) when NDV

x (NDV + 1) is less than 2 x NOF. If the same equality is not exploited, then Method (1) is less costly than

Method (3/4) when (NDV) 2 is less than NOF.

3.2 Appfications of ADIFOR

lh this section, various procedures are outlined whereby AD might be applied effectively to assist in computing

the SO aerodynamic SD. Many of the terms in each of the preceding four methods are exceedingly complex; in

particular, this applies to the large, complex groups of terms that are symbolized compactly with the operator DD---_bk.

Practically speaking, differentiation and coding by hand to construct these terms is impossible, even for the less

complicated CFD codes (e.g., 2-D F_.uler codes). Simply stated, without AD the equations for SO aerodynamic

sensitivity analysis cannot be constructed.

3.2.1 Noniterative Applications for Method (3/4) (DD.AV / AV.AV). Fortunately, ADIFOR is ideally

suited for the quick and reliable generation of source code to accurately evaluate the required SO terms without

an excessive expansion of the computer'memory. For example, the ADIFOR-assisted construction of the SO

Method (3) (DD.AV, Eq. (3.21)) involves creation of a source code that evaluates D__ The source code can be
i/ok "

created easily by the straightforward application of ADIFOR to an existing subroutine that evaluates R_; this AD

application is completely analogous to the AD-assisted creation of source code that evaluates _ which is R_,Db i ,

from an existing subroutine that evaluates R. (Recall that the creation of source code via ADIFOR to evaluate

R_ was an important requirement in the success of the FO ADrl scheme.) Similar remarks, of course, apply in
D(D F'

the AD-assisted creation of _ for use in Eq. (3.21). Therefore, the fact that the a priori calculation of the
Dbh

FO Q' matrix is required by all four SO methods (including Method (3)) is somewhat fortuitous because this

ensures that the FO source code to evaluate R._ (and °F')i:i will be available for further use in the AD-assisted

creation of the SO terms.

Except for the terms X_',k and Ai, the remaining terms in the SO Eq. (3.21) are taken as is from the same

FO equations that are used to calculate all Q_. The term X_',k would be produced by twice differentiating the

grid-generation code, and all Ai must be obtained by solving first the FO AV equations. After the required FO

equations for the required Q' and A are solved, the SO Method (3) becomes a noniterative, computationally

25

efficientscheme for computing SO SD, where all required SO terms are easily constructed via straightforward

applications of ADIFOR to key parts of the existing FO source code. The discussion of SO Method (3) in the

preceding two paragraphs is easily extended to the SO Method (4) because, as noted previously, the two methods

(Method (3/4)) are equivalent.

The requirement to first solve the FO AV equations is an important consideration for each SO method

except Method (1) (DD.DD). Unique computational difficulties exist (discussed earlier in greater detail) which

are associated with the use of ADIFOR to construct key parts of the AV methods; thus, these difficulties are

transmitted to these SO methods. This concern speaks to SO Method (3/4) directly, because it was concluded'

earlier that this method is unconditionally more efficient than SO Method (2) (AV.DD).

For the particular combination of NDV = 6 with NOF = 3 (which is applicable to the sample problems

of this study), the SO Method (3/4) would be about 3 times less costly than the remaining choice Method (1);

this projection is based on the previous discussion, which considers the comparative total number of large linear

systems that must be iteratively solved (27 large system solutions for Method (i), compared to 9 for Method

(3/4)). The actual implementation of the SO Method (3/4) is not included in the present study but is a topic

of ongoing work.

3.2.2 Black-Box and Incremental Iterative Applications for Method (1) (DD.DD) and Method (2)

(AV.DD). The SO Method (1) has been projected to be less costly than Method (3/4) for certain combinations of

NDV and NOF (which have been specified). An advantage unique to the SO Method (1) is that no adjoint-variable

equations are to be solved; thus, in principle, the entire scheme can be constructed from start to finish via the

present version of ADIFOR. However, an important disadvantage also exists: in contrast with the SO Method

(3/4), large linear systems must be iteratively solved for the SO Q" terms. Most of the remainder of this section

focuses on ADIFOR-assisted BB and/or IIM implementations of this SO method (DD.DD). The discussion and

resulting methods are analogous to that seen earlier for ADIFOR-assisted implementations of the FO DD scheme.

In principle, SO aerodynamic SD can be obtained by a BB application of the present version of the AD

tool (ADIFOR 1.0) to an AD-enhanced version of the original flow code (called the BB.BB method). However,

the BB.BB scheme can also be obtained by applying the future new version of the AD tool (ADIFOR 2,X) to

the original flow code; this advanced version of ADIFOR is presently being developed with the new, optional

26

capabilityof providing SO derivatives*. For advanced CFD codes, the BB.BB method may be exceedingly

inefficient computationally, for reasons that are discussed subsequently; in addition, the memory requirements

could become prohibitively large. Therefore, this approach was abandoned early in the present study.

A convenient symbolic representation of the BB.BB scheme is obtained by differentiating Eq. (2.16) with

respect to b to yield

Qlt"+l =Qln"- pn RIIn-- 2 pin Rln --P"nR"; n = 1,2,3,... (3.25)

Incontrast,theIIM forthe SO Method (I)(DD.DD) can be representedcompactlyby combining Eqs. (3.11)and

(3.12);the resultis(by dropping the subscriptsj,k)

Q.m+l= Ql#m_pRllm; m= 1,2,3,... (3.26)

Clearly,Eqs. (3.25)and (3.26)aresymbolicallyequivalentonly atconvergenceof the flow equationsand

the FO sensitivityequations.Computationally,however, Eqs. (3.25)and (3.26)are by no means equivalent;the

potentialforgreaterefficiencyiswith Eq. (3.26).This potentialisseen from thepreviousdiscussionofthe FO

BB applicationofAD, where Eqs. (2.16)and (2.17)arccompared. The potentialforcomputationalinefficiencyis

even greaternow thanpreviouslyforEq. (2.16)becauseoftheadditionalpresenceoftheunwanted term P"" R n

inEq. (3.25)and becausetheunwanted m'm 2P'" R'" representsa doublecomputationalevaluationofP'" R'".

ItissuggestedthatADIFOR can beusedtoassistinthecreationofthepotentiallyefficientscheme represented

by Eq. (3.26)in a manner thatiscompletelyanalogousto the implementationofthe AD-assistedFO method,

ADII. Thus, theresultingmethod, known here asthe ADII.SO scheme,involvestheAD of allterms on theRHS

onlyofEq. (2.9),which isthe residualR', ofthe linearFO sensitivityequations(F_x].(2.4)).These differentiated

terms arcthenjudiciouslyassembledforefficientoperationon theRHS oftheidenticalapproximateLHS operator

and algorithmthatwere alsoused toefficientlysolvethenonlinearflow and the linearFO sensitivityequations.

The ADII.SO scheme ispotentiallythemost efficientimplementationof the SO Method (I)(DD.DD) that

isfeasible,because HD constructionof the scheme istoo complex to be practical.Itrepresentsthe only true

SO IIM which, inprinciple,can be constructedintotalwith thepresentversionofADIFOR. (RecallthattheSO

" ADIFOR 2.0 has re.o_nflybe,ca installedand isbeing teste.datNASA Langley with fullFortran support,improved errorhandling,and

sparsity enhancclncnts, but without SO SD capability.

27

Methods (2) and (3/4) require construction of the FO AV equations, in which the construction of some mrms is

not feasible via ADIFOR.) Actual implementation of the ADII.SO scheme is not included in the present study

but is a topic of ongoing work.

An alternative AD-assisted SO strategy is the BB application of ADIFOR to the scheme represented by Eq.

(2.17); after differentiation with respect to b, the representation becomes

Qnm+l = q.rn_pR.m_p_lqtlm; m= 1,2,3,... (3.27)

From the previous discussions of the analogous FO Eqs. (2.16) and (2.17), Eq. (3.27) clearly represents a significant

improvement over Eq. (3.25) with respect to computational efficiency. However, Eq. (3.27) will also surely be

less efficient than the true SO IIM (Eq. (3.26)). Symbolically (but not computationally), the two are equivalent

only at convergence when R' vanishes.

The preceding method is constructed by the BB AD of source code which computes FO SD via an UM (except

the AVI/scheme, for the present application). In principle, this code could be the source code for the previously

discussed ADII scheme. The source code for the HD DDII method was selected in the sample problems, however,

because it was more efficient. The SO method which results is known here as the DDII.BB scheme; by extension

of this terminology, the FO DDIITC and DDIITCFR methods become the SO DDIITC.BB and DDIITCFR.BB

schemes, respectively. By considering the latter two schemes, it is interesting to note that part of the original

source code differentiated by ADIFOR is that which calculates the turbulence-modeling correction terms (i.e.,

those terms that were originally created by ADIFOR are then successfully differentiated by ADIFOR). This is the

only example in the present work where this was actually attempted.

For completeness, a final SO scheme is introduced here, called the AVII.BB method, which can be constructed

via the BB application of ADIFOR to the source code for the FO AVII scheme. The AVII.BB scheme would yield

inaccurate SO SD for the turbulent example problem because the full AD-generated correction of the turbulence-

modeling terms could not be added to the FO AVII scheme. Symbolically, the AVII.BB scheme is represented

by combining Eqs. (2.12) and (2.13) and differentiating with respect to b to yield

A.tm+l = .Aim -- (p)TG,m - (p,)TGm ; m= 1,2,3 0.28)

In contrast, a similar representation of the IIM for the SO Method (2) (AV.DD) is (Recall Eqs. (3.18) and (3.19))

A'm+_ = A" - (p)T G,m ; m = x,2,3 0.29)

28

Comparisons of the two schemes represented by Eqs. (3.28) and (3.29) yield conclusions with respect to

computational efficiency that are analogous to those made previously for other FO and SO methods that employ

BB applications of ADIFOR.

The AVII.BB scheme, which essentially is an AD-assisted form of the SO Method (2) (AV.DD), is not

pursued further in this study because the SO Method (2) is always less efficient than the SO Method (3/4)

(DD.AV / AVastV) as demonstrated earlier.

3.3 Computational Results: SO SD

The FO SD results for the previous sample problems are extended here to include calculation of the complete

Hessian matrices _bc , "_bc , and _bc . These SO SD are calculated with different methods, and the results are

compared on the basis of accuracy and computational time and memory. For the methods tested, considerable CW

could have been saved by taking advantage computationally of the symmetry of the Hessian matrices; however,

this was not done here in order to exploit this symmetry as an additional internal accuracy check.

3.3.1 Accuracy Comparisons. The SO SD Hessian matrices are calculated for both the laminar and turbulent

example problems with two basic methods known here as QA.CD and DDH.BB. The latter method has been

described previously herein; more precisely specified, the DDII.BB scheme is applied to the laminar example,

and the DDIITC.BB scheme is applied to the turbulent example.

The QA.CD method can be described as a hybrid quasi-analytical/central finite-difference scheme, which is

implemented in the following manner:

1) Recall that for the FO CD method 12 machine-zero-converged solutions of the nonlinear flow equa-

tions were generated: two perturbations for each design variable, a forward and a backward perturbation of

:,bj= ±5 0r--6 × bj.

2) For each of the 12 perturbed nonlinear flow solutions, the complete set of FO SD were calculated using

the FO HI) QA code; specifically, the DDII and DDIITCFR methods were used for the laminar and turbulent

examples, respectively. A reduction of 10 OM or better in the error of each linear system is specified; 72 linear

systems are solved for these FO SD.

3) The complete SO Hessian matrices were calculated with central finite-difference approximations using the

QA FO derivatives calculated via that of the preceding discussion.

29

Thus,the QA.CD method for the SO SD performs the first differentiation exactly, and the second differentiation

via a CD approximation.

The SO SD that were calculated via the QA.CD method are presented in Tables (B.la) and (B.lb) (in

Appendix B) for the laminar and turbulent sample problems, respectively. In these results, the actual numerical

values of the derivatives are given for the main-diagonal and above-main-diagonal terms. The results presented

for the below-main-diagonal terms are SD ratios, where each result shown has been divided by its equivalent

above-main-diagonal term; clearly this calculation is an internal accuracy check of all the off-main-diagonal terms.

As expected, these below-main-diagonal SD ratios are all unity to at least three and usually four or more significant

digits. In these tables, the quasi-analytical first differentiation is with respect to bj (shown horizontally), followed

by the CD approximate second differentiation with respect to bk (shown vertically).

The SO results that were generated via the DDII.BB method are shown for the laminar example in Table

(B.2a); similar results with the DDI1TC.BB scheme for the turbulent example are shown in Table (B.2b). All of

these results are given as SO SD ratios, where the numerical value of each result has been normalized by the

numerical value of the respective term calculated via the QA.CD method. These tables clearly show the excellent

agreement among the results obtained by these two methods, as expected.

Prior to execution of the AD-enhanced code for the DDII.BB-type methods, the FO solution for the complete

Q' matrix should be calculated first as input for the subsequent SO SD calculations. This initial Q' is calculated

with the DDII-type methods (i.e., the original code from which the AD-enhanced code was created). An initial

total of six linear systems is solved; a reduction of 10 OM in the error of each was specified. Subsequent execution

of the AD-enhanced code produces the solutions of 36 linear systems for the complete SO SD Q"; an average

reduction of 80M in the error of each system is specified in this case. These tight convergence tolerances should

ensure accurate results, but at great expense in the computational timing comparisons presented subsequently.

In addition to the 36 solutions for the SO terms, execution of the AD-enhanced code results in the solution

of six linear systems for the FO Q'; this is a computationaUy wasteful, repeated solution for these terms, but

their calculation cannot be avoided here because it is the function of the original code. The initial solution for

Q' as input to the AD-enhanced code, discussed previously, can be avoided under certain conditions; however,

such avoidance may not necessarily be efficient with respect to convergence rates and computer memory. This

implementation is always possible and is also straightforward to invoke if the original code solves the FO sensitivity

equations concurrently; the initial input of the complete Q' matrix is replaced directly by the dynamic calculation

30

of these same terms, because mey also evolve concurrently during the SO SD calculations. The original code used

here solves the FO sensitivity equations sequentially, however. Consequently, avoidance of the initial QI solution

becomes a more complicated issue; in some cases where the complete Hessian matrices are not calculated, it is

not even possible. An expanded discussion of the preceding ideas is planned for Ref. [20].

The complete set of terms on the main diagonal of the Hessian matrices can be calculated via the CD.CD

method (i.e., the pure central finite-difference approximation of these terms) with the initial flow solution and

the 12 perturbed flow solutions calculated previously for application in the FO CD and SO QA.CD schemes.

An approximation of the complete set of cross-derivative terms in this manner is also possible, of course, but

would require many additional perturbed flow solutions. Comparison of the results for these terms from the

applications of the CD.CD and QA.CD methods is presented in Tables (B.3a) and (B.3b) for the laminar and

turbulent examples, respectively; the results shown are SO SD ratios, where the CD.CD calculations reported here

have been normalized by the respective QA.CD results.

The two Tables, (B.3a) and (B.3b), show poor agreement among the results of these two methods. This dis-

crepancy is attributed to inaccuracy in the CD.CD calculations; it occurs whenever a finite-difference perturbation

is too small, the consequence of which is a necessity for accuracy in the function evaluations that is beyond the

capability of the finite-arithmetic machine. With the present perturbation Abj= -1-5.0E---6X bj, this machine lim-

itation was not exceeded for the accuracy desired in the FO CD results. For the SO CD.CD results, (Abi) 2 is now

the divisor in the finite-difference expressions. Compared to the FO CD approximations, six or more additional

significant digits of accuracy are required in the function evaluations to achieve the first digit of accuracy in the

SO CD.CD results (with this perturbation). Of course, significant competing accuracy considerations emerge as

the perturbation size is progressively increased. Larger perturbations were not tried for this demonstration because

of the inordinate amount of CPU time required to produce SO derivatives, and the lack of any guarantee that the

CD.CD results would be any better. Therefore, when the simple finite-difference method is applied, the selection

of a good numerical perturbation size becomes progressively more difficult for higher order derivatives.

3.3.2 Computational Time and Memory Comparisons. In this section, the SO methods of the previous

section are further subdivided in a manner similar to that which was done previously for the various FO methods

that were tested. As before, these subdivisions have no impact on the SD that are calculated but can greatly

impact the computational time and memory requirements.

31

The QA.CD method is subdivided into two methods, depending on whether or not the FJ option is activated;

this refers to the first phase of the method only, where the 12 nonlinear flow solutions are obtained. When this

option is active, the method becomes the QA.CD(FJ) scheme; the method remains the simple QA.CD scheme

when the option is inactive.

The DDII.BB and DDI1TC.BB methods, including the previously described DDIITCFR.BB efficiency op-

tion that is associated with the latter method, are subdivided into the following six schemes: DDII.BB(6),

DDII.BB(5+I), DDIITC.BB(6), DDI1TC.BB(5+I), DDITI'CFR.BB(6), and DDI1TCFR.BB(5+I). These subdi-

visions are made based on different applications of the parameter gp in the AD-enhanced code, as described

previously for the FO results.

Comparisons of total CPU times are shown in Table (B.4) for the laminar and turbulent sample problems.

All reported timings do not include the cost of the initial flow solution. For the QA.CD and QA.CD(FJ) schemes,

the cost for the 12 perturbed nonlinear flow solutions and the 72 linear system derivative solutions is included in

the reported timings. For the AD-assisted DDII.BB-type schemes, the computational cost is included for initially

solving the FO equations for all Q'. (Recall that this FO solution is required input at the outset of the execution

of the AD-enhanced code for the SO SD.) Table (B.5) shows comparisons (excluding the QA.CD and QA.CD(FJ)

methods) of CPU time per iteration per SO linear system solved. The cost of the initial FO solution for Q' is

not included in the results of this table. As described previously for the FO results, the individual effects of gp

= 5 and gp = 1 are shown in Table (B.5). Finally, the total computer memory requirements for the different

methods are compared in Table (B.6).

3.4 Conclusions: SO SD

Conclusions based on the calculations for the SO SD are enumerated subsequently.

1) The calculation of SO aerodynamic SD by a pure finite-difference scheme is much more sensitive to the

selection of a proper perturbation size than is the calculation of the FO SD; this difficulty is noted in addition to the

extreme computational cost of the method, particularly if the complete Hessian matrices (with cross-derivatives)

are computed. These difficulties for the SO derivatives can be mitigated to a large extent if the FO derivatives,

at least, are calculated via one of the HD or AD methods discussed previously.

2) The good agreement that is seen in the AD-assisted SO results (when compared with the results from the

QA.CD method) confirms that ADIFOR can be successfully used as a tool to construct and implement the SO

32

methodsfrom source code that evaluates the FO derivatives. In principle, the source code for FO derivatives

can be constructed either in whole or in part by either HD or AD. Without ADIFOR, the SO schemes could not

be implemented even for simple CFD codes; construction of the source code by hand would not be feasible to

evaluate the extremely large number of complex SO terms that are involved.

3) The previously discussed limitations of ADIFOR when the FO AVII methods are constructed carries over at

least indirectly in all the SO methods except Method (1) (DD.DD) because the other three SO methods require

the FO AV equations to be solved. This requirement is significant because Method (3/4) is potentially by far the

most efficient method for particular combinations of NDV and NOF.

4) As expected, the computational results, although accurate, were very costly in terms of CPU time and (for

the DDII.BB-type methods) computer memory. The possibility exists that these computational costs can be

significantly reduced, however, as described in the subsequent conclusions; this possibility is also a topic of

ongoing study.

5) For the particular combination of NDV and NOF studied here, Method (3/4) is potentially far more efficient

than the methods actually tested; it is projected to cost only slightly more than the cost of solving the large

systems of equations for the FO DD and AV schemes---a total of only nine large systems. This cost, taken from

the HD FO results, was a total of only 583 and 1014 CPU seconds for the laminar and turbulent-flow examples,

respectively. The results for the turbulent-flow example would have inaccuracies traced to the FO AVII scheme

(which could not be corrected via AD for all of the turbulence-modeling terms).

6) In contrast with the nine large system solutions that would be required for Method (3/4), the DDII.BB type of

implementation of Method (1) included the solution of 42 large systems---six for FO derivatives and 36 relatively

inefficient (as discussed subsequently) solutions for the SO derivativesl Note that by simply taking advantage

computationally of the symmetry of the Hessian matrices, the number of solutions for SO derivatives could be

reduced from 36 to 21.

7) As discussed previously, the DDII.BB-type approach is not the most efficient implementation of Method (1)

because it is not a true IIM; it is believed that the true SO IIM implementation, known here as the ADII.SO

approach, would be the most efficient feasible implementation of Method (1). The improvement in CPU time and

memory requirements that results from the ADII.SO implementation (compared to the DDII.BB-type approach)

is projected to be roughly proportional to those improvements seen in a comparison of the two FO methods ADII

and BBFJ (that is, ADII.SO could be possibly 40%-70% faster than DDII.BB).

33

8) Thecomputationalefficiency,in termsof CPU time and memory, is affected greatly by the selection of the

parameter gSp$ in the AD-assisted SO schemes. This effect is similar to that noted previously in the FO results.

4.0 Summary and Final Conclusions

A number of different approaches for computing first-order (FO) aerodynamic sensitivity derivatives (SD)

have been tested, and the results have been compared on the basis of accuracy,computationaltime, and computer

memory requirements. The methods represent a broad spectrum of choices: finite-difference methods, hand-

differentiated (HD) incremental iterative method (l/M) schemes, and black-box (BB) automatic differentiation

(AD) methods. In addition, combinations and variations of these are possible.

The automatically differentiated incremental iterative (ADII) scheme stands out as a very well-rounded

combination of the best features of the other methods. Although it is not yet as efficient as the HD schemes,

it is more efficient than all other methods tested---substantially more efficient than the simple BB and central

finite-difference (CD) approaches. The ADII method is not quite as easy to implement as the BB approach.

However, when compared with the HD methods, the ADII scheme can be implemented quickly, reliably, and

with very accurate results, even for very complex computational fluid dynamics (CFD) codes. The ADII scheme

also requires less expansion of computer memory than some of the other AD-assisted methods. When compared

with the best CD method, the most efficient implementation of the ADII scheme improved computational efficiency

by a factor of approximately 3.6 for the laminar example, and 1.7 for the turbulent example; the memory increase

was about 1.6 times that of the original flow code. The computational penalty which is associated with the

AD-assisted differentiation of the turbulence-modeling terms is significant and disproportionately large for all

applicable methods; this requires additional examination for possible improvements.

A complete procedure has been described by which the discrete second-order (SO) aerodynamic SD can

be calculated from modern CFD codes. The assistance of AD is required for the implementation, because of

the extremely large number of complex terms that are required. Initially, four SO methods were presented; in

effect, this selection was reduced to only two, because SO Methods (3) and (4) were shown to be equivalent and

unconditionally more efficient than Method (2). ThereaRer, the choice between either Method (1) or Method (3/4)

is dependent upon the relative size of NDV and NOF; a large NOF favors Method (1). The specific criterion to

be used for this selection was defined herein.

34

TheSOMethod (3/4) requires that the large systems for the FO DD an___ddAV schemes are solved first.

Thereafter, the computation of the SO SD is noniterative (i.e., additional simultaneous solutions of large systems

are not needed). Method (1) requires that the large systems for the FO DD scheme are solved first; the FO AV

systems are not solved, which can be a significant advantage over Method (3/4) for reasons that have been detailed

herein. Thereafter, the SO SD are computed by solving large systems for SO terms; however, these equations

and the efficient solution methods for them are analogous to those for the FO DD method. The computational

results for the SO SD were highly accurate, which confirms that ADIFOR is a reliable tool in constructing these

SO methods. Significantly improved results with respect to computational efficiency for SO SD are expected in

the future from ongoing work.

5.0 Acknowledgments

The work of L.L.S., A.C.T. IIL G.J.-W.H., and V.M.K. is supported by NASA grant NAG-l-1265 from

NASA Langley Research Center; Henry Jones is the technical monitor. We acknowledge Chris Bischof of

Argonne National Laboratory and Alan Carle of Rice University for consultations on the use of ADIFOR and the

assistance of Kara Halgler in helpful discussions regarding vectorization improvements.

6.0 References

1. Korivi, V.M., Taylor, A.C. III, Newman, P.A., Hou, G.J.-W., and Jones, HE., "An Approximately-

Factored Incremental Strategy for Calculating Consistent Discrete Aerodynamic Sensitivity Derivatives,"

Journal of Computational Physics, Vol. 113, No.2, pp. 336-346. (also Proceedings of the Fourth

AIAARJSAF/NASAJOAI Symposium on Multidisciplinary Analysis and Optimization, AIAA, Cleveland,

OH, 1992, pp. 465--478; AIAA Paper 92--4746--CP, Sept. 1992).

2. Newman, P.A., Hou, G.J.-W., Jones, HE., Taylor, A.C. 11I, and Korivi, V.M., "Observations on Compu-

tational Methodologies For Use In Large-Scale Gradient-Based Multidisciplinary Design," Proceedings of

the Fourth AIAAR/SAF/NASAJOAI Symposium on Multidisciplinary Analysis and Optimization, AIAA,

Cleveland, OH, 1992, pp. 531-542 (AIAA Paper 92--4753--CP, Sept. 1992).

3. Korivi, V.M., Taylor, A.C. III, Hou, GJ.-W., Newman, PA., and Jones, H.E., "Sensitivity Derivatives for

Three-Dimensional Supersonic Euler Code using Incremental Iterative Strategy," A Collection of Technical

35

Papers, Part 2, l lth AIAA Computational Fluid Dynamics Conference, AIAA, Orlando, FL, 1993, pp.

1053-1054 (expanded version, AIAA J., Vol. 32, No. 6, June 1994, pp. 1319-1321).

4. Burgreen, G.W., and Baysal, O., "Three-Dimensional Aerodynamic Shape Optimization of Wing Using

Sensitivity Analysis," AIAA Paper 94-0094, January 1994.

5. Korivi, V.M., Newman, P.A., and Taylor, A.C. HI, "Aerodynamic Optimization Studies Using a 3-D Super-

sonic Euler Code with Efficient Calculation of Sensitivity Derivatives," AIAA Paper 94-4270, September

1994.

6. C_n'iewank, A., and Corliss, G.F., eds., Automatic Differentiation of Algorithms: Theory, Implementation, and

Application, SIAM, Philadelphia, PA, 1991.

7. Griewank, A., "On Automatic Differentiation," In Iri M., and Tanabe, K., eds., Mathematical Programming:

Recent Developments and Applications, pp. 83-108, Kluwer Academic Publishers, Boston, MA 1989.

8. Rall, L.B., "Automatic Differentiation: Techniques and Applications," Volume 120 of Lecture Notes in

Computer Science, Mathematical Programming: Recent Developments and Applications, Springer-Veflag,

Berlin, Germany, 1981.

9. Bischof, C.H., and G-riewank, A., "ADIFOR: A Fortran System for Portable Automatic Differentiation,"

in Fourth AIAA/USAF/NASAJOAI Symposium on Multidisciplinary Optimization, Cleveland, OH, pp.

433-441, AIAA 92-4744-CP, Sept. 1992.

10. Bischof, C., Corliss, G., Green, L., Griewank, A., Haigler, K., and Newman, P., "Automatic Differentiation

of Advanced Codes for Multidisciplinary Design," Computing Systems in Engineering 3(6), 1993. Also

presented at the Symposium on High-Performance Computing for Flight Vehicles, Dec. 7-,9, 1992, Arlington,

VA.

1 I. Green, L., Newman, P., and Haigler, K., "Sensitivity Derivatives for Advanced CFD Algorithm and Viscous

Modelling Parameters via Automatic Differentiation," AIAA 93-3321, 1993.

12. Green, L., Bischof, C., Carle, A., C_n'iewank, A., Haigler, K., and Newman, P., "Automatic Differentiation of

Advanced CFD Codes With Respect to Wing Geometry Parameters for MDO," Abstracts from Second U.S.

National Congress on Computation Mechanics, August 16-18, 1993, Washington, D.C., p. 136.

13. Taylor, A.C. III, Newman, P.A., Hou, GJ.-W., and Jones, H.E., "Recent Advances in Steady Compressible

Aerodynamic Sensitivity Analysis," IMA Workshop on Flow Control, Institute for Mathematics and Its

36

Applications,University of Minnesota, MN, Nov. 1992 (written version to appear in Springer-Verlag IMA

Series Workshop Proceedings).

14. A.C. Taylor 111, G.W. Hou, and V.M. Korivi, "Sensitivity Analysis, Approximate Analysis, and Design

Optimization For Internal and External Viscous Flows," AIAA Paper 91-3083, September 1991.

15. Bischof, C.H., Carle, A., Corliss, G.F., Griewank, A., and Hovland, P., "ADIFOR: Generating Derivative

Codes from Fortran Programs," Scientific Programming, 1(1), pp. 1-29, 1992.

16. Bischof, C.H., and Hovland, P., "Using ADIFOR to Compute Dense and Sparse Jacobians. ADIFOR Working

l'4ote #2," ANL-MCS-TM-158, Mathematics and Computer Science Division, Argonne National Laboratory,

1991.

17. Bischof, C.H., Corliss, G.F., and G-riewank, A., "ADIFOR Exception Handling. ADIFOR Working Note #3,"

ANL-MCS-TM-159, Mathematics and Computer Science Division, Argonne National Laboratory, 1991.

18. Bischof, C.H., Carle, A., Corliss, G.F., Griewank, A., and Hovland, P., "Getting Started With ADIFOR.

ADIFOR Working Note #9," ANL-MCS-TM-164, Mathematics and Computer Science Division, Argonne

National Laboratory, 1992.

19. Griewank, A., Bischof, C., Corliss, G., Carle, A., and Williamson, K., "Derivative Convergence of Itera-

tive Equation Solvers," Technical Report MCS-P333-1192, Mathematics and Computer Science Division,

Argonne National Laboratory, 1992.

20. Sherman, L.L., "Automatic Differentiation for First- and Second- Order Sensitivity Derivatives of a CFD

Code," M.S. Thesis, Dept. of Mechanical Engineering, Old Dominion University, Norfolk, VA (in prepa-

ration).

21. G.J.-W. Hou, A.C. Taylor Ill, and V.M. Korivi, "Discrete Shape Sensitivity Equations for Aerodynamic

Problems," AIAA Paper 91-2259, June, 1991. (Also to appear, International Journal of Numerical Methods

in Engineering).

22. Baldwin, B. and Lomax, H., "Thin-Layer Approximation and Algebraic Model for Separated Turbulent

Flow," AIAA Paper 78--0257, January, 1978.

23. Hou, GJ.-W., and Sheen, J., "Numerical Methods for Second-Order Shape Sensitivity Analysis With

Applications to Heat Conduction Problems," International Journal for Numerical Methods in Engineering,

Vol. 36, pp. 417-435, 1993.

37

7.0 Appendix A: Tables for First-Order Results

Table (A.1): First-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios; Laminar Example

Solution Design Variable _ _
Method bj db db db

Central Differences

Method (CD)

SDcD

T - 1.392E+00 +2.019E-01 + 1.805E-01

C +6.583E+00 +7.583E-02 -2.240E+00

L - 1.154E-02 +5.540E-05 -2.122E-02

+6.122E+00 +9.181E-02 -3.166E-02

Moo +5A38E-03 +1.628E-02 -4.732E-03

Re +5.958E-06 -4.912E-06 -6.563E-07

Direct T 1.0000 1.0000 1.0000

Differentiation
C 1.0000 1.0000 1.00130

Incremental
Iterative Method L 1.0000 1.0009 1.0000

(DDII) a 1.0000 1.0000 1.0004

Moo 1.0000 1.0000 1.0000
SDcD

Re 1.0000 1.0000 1.0000

Adjoint-Variable T 1.0000 1.0000 1.0000
Incremental

C 1.0000 1.0000 1.0000
Iterative Method

(AVID L 1.0000 1.0009 1.0000

_ 1.0000 1.0000 1.0004
SDcD

Moo 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000

Automatic T 1.0000 1.0000 1.0000

Differentiation in
C 1.0003 1.0000 1.0000

Incremental
Iterative Form L 1.0000 1.0009 1.0000

(ADII) t_ 1.0000 1.0000 1.0004

Moo 1.0000 1.0000 1.0000
SDcD

Re 1.0000 1.0000 1.0000

Automatic T 1.0000 1.0000 1.0000

Differentiation, C 1.0000 1.0000 1.0000
"Black Box"

Method (BB) L 1.0000 1.0009 1.0000

SD_Daa" ot 1.0000 1.0000 1.0004
SDcD

Moo 1.0001 1.0000 1.00(_

Re 1.0000 1.0000 1.0000

38

Table(A.2):First-OrderSensitivityDerivativesandSensitivity-DerivativeRatios;TurbulentExample

Solution DesignVariable dC_ _ dCu
Method bj db db db

Central Differences

Method (CD)

SDcD

T +7.919E-01 +2.744E-01 -4.153E-01

C +2.063E+01 +6.776E-01 -5.770E+00

L + 1.108E-01 - 1.174E-02 -5.350E-02

t_ + 1.300E+01 +4.346E-01 -6.328E_01

Moo +2.040E+00 +1.969E-01 -5.972E-01

Re - 1.185E-09 -2.829E- 10 + 1.49713-10

Direct T 0.2874 0.9672 0.7523

Differentiation and
C 0.9415 0.9609 0.9560

Adjoint-Variable
Incremental L 1.2077 0.9806 1.0447

Iterative Methods, a 0.9221 0.9663 0.7388
Uncorrected (DDII

and AVII) Moo 0.8690 0.9754 0.9093
sEnmt an d s__Em.u.
SDcD SDcD Re -3.4966 1.7251 -2.9367

Direct T 1.0000 1.0000 1.0000

Differentiation
C 1.0000 1.0000 1.0000

Incremental

Iterative Method, L 1.00_ 1.0000 1.0000

Corrected
1.0000 1.0003 1.0000

(DDIITC)
Moo 1.0000 1.00_ 1.0000

SDcD Re 1.0000 1.0000 1.0000

Automatic T 1.0000 1.0000 1.0000

Differentiation in
C 1.0000 1.0000 1.0000

Incremental
Iterative Form L 1.0000 1 .(K)_ 1.0000

(ADII) t_ 1.0000 1.0000 1.0000

Ss-g_cD Moo 1.0000 1.0000 1.0000

Re 1.0000 1.00_ 1.0000

Automatic T 1.0000 1.0000 1.0000

Differentiation, C 1.0000 1.0000 1.0(O
"Black Box"

Method (BB) L 1.0000 1.0000 1.0000

SDas t_ 1.0000 1.0000 1.0000
SDcD

Moo 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000

39

Table (A.3): Computational Timing Comparisons: Total CPU Time (sees)

Method Laminar Turbulent

CD 9,800* 12,000"

CDFJ 2,962 4,057

AVII 324 300

DDII 259 590

DDIITC Not Applicable 2,000*

DDI1TCFR Not Applicable 714

ADII(6) 1,722 4,879

ADI/(5+I) 820" 2,300"

BB(6) 14,000" 27,000"

BB(5+I) 12,000" 24,000*

BBFJ(6) 2,696 6,964

BBFJ(5+I) 1,400" 3,600*

*Projected result based on timings from Table (A.4)

Table (A.4): Computational Timing Comparisons: CPU Time (sees) / Iteration / Linear System Solved

Method Laminar Turbulent

AVII 0.06196 0.06293

DDII 0.06325 0.06314

DDIITC Not Applicable 0.2285

DDI1TCFR Not Applicable 0.07996

ADII(6) 0.4196 0.5432

ADH(5) \ADII(1) 0.1705 \0.3453 0.2096 \0.5107

BB(6) 3.448 3.570

BB(5) \ BB(1) 2.033 \ 8.010 2.050 \ 8.096

BBFJ(6) 0.7694 0.9046

BBFJ(5) \ BBFJ(1) 0.3039 \ 0.8827 0.3469 \ 1.046

40

Table (A.5): Total Computer Memory Comparisons

Method Total Memory (Mw)

CD, CDFJ 5.27

DDII, AVII, DDffI'C, DDIITCFR 7.39

ADII(6) 9.07

ADII(5) \ ADII(1) 8.36 \ 5.09

BB(6), BBFJ(6) 34.65

BB(5), BBFJ(5) \ BB(1), BBFJ(1) 29.94 \ 10.27

41

8.0 Appendix B: Tables for Second-Order Results

Table OB.la): Second-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios: QA.CD Method;

Laminar Example

bk\bj T C L a Moo Re

T -2.280E+01 -8.390E+01 -6.579E-01 -3.661E+01 -4.728E+00 +3.752E-06

dbkdbj

C 1.0000 -6.708E+01 +1.029E-01 -3.048E+01 -5.473E+00 +3.680E-04

L 1.0000 1.0000 - 1.079E-02 + 1.803E-01 - 1.351E-01 +4.409E-06

\SD

SD \

Ratios

a 1.0000 1.0000 1.0000 -2.376E+01 +1.700E+00 +1.043E-04

Moo 1.0000 1.0000 1.0000 1.0000 -1.222E-01 +7.902E-06

Re 1.0001 1.0000 1.0000 1.0000 1.0000 - 1.446E-09

T + 1.180E+00 + 1.017E+00 -2.651E-02 -4.182E-01 + 1.690E-01 -5.236E-06

dbadbj

C 1.0000 +9.983E+00 -6.234E-02 -1.352E+00 +2.412E-01 -2.481E-06

L 1.0000 1.0000 +4.952E-03 +3.478E-02 -3.804E-03 +6.470E-08

\SD

SD \

Ratios

a 1.0000 1.0000 1.0001 +5.606E+00 +9.573E-02 +2.326E-06

Moo 1.0000 1.0000 1.0000 1.0001 +4.447E-02 -3.945E-07

Re 1.00130 1.0001 1.0000 1.0000 1.0000 +1.606E-09

dbkdbj

LSD

SD \

Ratios

T +2.965E+00 + 1.269E+01 + 1.907E-01 +3.047E+00 +6.144E-01 +4.748E-07

C 1.0000 +8.244E+00 +1.233E-02 +3.545E+00 -6.423E-01 -5.805E-05

L 1.0000 1.0000 -1.076E-03 +3.947E-02 +1.459E-02 -1.481E-06

t_ 1.0000 1.0000 1.0000 +2.206E+00 +2.385E-01 +6.425E-07

Moo 1.0000 1.0000 1.0000 0.9999 -3.726E-02 -2.892E-07

Re 1.0000 1.0000 1.0000 0.9999 0.9998 +1.547E-10

42.

Table (B.lb): Second-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios: QA.CD Method;

Turbulent Example

bk \bj T C L or MOo Re

T -1.587E+02 -5.480E+02 -5.168E-01 -1.883E+02 -1.266E+02 - 1.664E-09

LSD

SD \

Ratios

C 1.0000 - 1.780E+03 -2.415E+00 -6.383E+02 -4.057E+02 -3.025E-08

L 1.0003 1.0003 -5.723E-02 +3.011E-01 -7.414E-01 - 1.044E-09

or 1.0000 1.0000 1.0000 - 1.772E+02 -1.068E+02 -1.355E-08

Moo 1.00t30 1.0000 1.0000 1.0000 -1.020E+02 +6.374E-09

Re 1.0000 1.0000 1.0000 1.0000 1.0000 +1.512E-16

LSD

SD \

Ratios

T +7.245E+00 +1.763E+01 -2.782E-01 +1.278E+01 +6.11BE+00 -7.085E-10

C 1.0000 +6.397E+01 -6.362E-01 +3.285E+01 +1.730E+01 -3.79713-09

L 1.0000 1.0000 +1.683E-02 -5.967E-01 -2.184E-01 +1.675E-11

or 1.0000 1.0000 1.0000 +2.879E+01 +1.235E+01 -1.916E-09

Moo 1.000(3 1.0000 1.0000 1.0000 +5.029E+00 -1.054E-09

Re 1.0000 1.0000 1.0000 1.0000 1.0000 +1.104E-16

_SD

SD \

Ratios

T +4.993E+00 + 1.492E+01 +3.707E-01 - 1.283E+01 -5.695E+00 +3.513E-09

C 1.0000 -3.965E+00 +8.127E-01 -4.331E+01 -2.995E+01 +1.753E-08

L 1.0000 1.0000 -3.088E-03 +1.308E+00 +3.977E-01 +2.034E-10

or 1.0000 1.0000 1.0000 -3.227E+01 -2.348E+01 +4.208E-09

M Oo 1.0000 1.0000 1.0000 1.00(I) - 1.173E+01 +2.259E-09

Re 1.0000 1.00_ 1.0000 1.0000 1.0000 - 1.668E- 17

43

Table (B.2a): Second-Order Sensitivity-Derivative Ratios: DDII.BB Method, Normalized by Results

from the QA.CD Method; Laminar Example

bk\bj T C L a Moo Re

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SO

SD

Ratios

c_ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SO

SD

Ratios

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000 1.00_ 1.0000 1.0000

a 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000

Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SO

SD

Ratios

C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

a 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0002 1.0000

44

Table (B.2b): Second-Order Sensitivity-Derivative Ratios: DDIITC.BB Method, Normalized by Results

from the QA.CD Method; Turbulent Example

bk \bj T C L a Moo Re

T 1.00013 1.0000 1.0000 1.0000 1.0000 1.0000

C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000 1.0000 1.0000 1.00(0

SO

SD

Ratios

Ot 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SO
SD c_ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ratios
Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.001XI 1.0000 1.0000 1.0000

SO
SD a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ratios
Moo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

45

Table(B.3a):Second-OrderSensitivity-DerivativeRatios;CD.CDMethod Normalized by Results from

the QA.CD Method; Main-Diagonal Terms Only; Laminar Example

T C L a Moo Re

-0.7096 -18.31 -71.90 -18.78 +2.138 -3.023

+1.803 44.341 +5.158 +3.027 +1.214 +1.095

+1.017 +5.160 -18.00 +0.6872 +0.9608 +0.6613

Table (B.3b): Second-Order Sensitivity-Derivative Ratios; CD.CD Method Normalized by Results from

the QA.CD Method; Main-Diagonal Terms Only; Turbulent Example

T C L a Moo Re

+0.8072 +0.5389 -12.55 -1.274 +1.000 +31.81

+1.028 +0.8928 +1.390 +1.072 +0.9992 +1.353

+1.569 -35.16 -12.87 +0.2042 +0.9966 -17.68

46

Table(B.4):ComputationalTimingComparisons: Total CPU Time (secs)

Method Laminar Turbulent

QA.CD 14,000" 23,000"

QA.CD(FJ) 7,018 14,941

DDII.BB(6) 14,543 Not Tested

DDII.BB(5+I) 4,300* Not Tested

DDI1TC.BB(6) Not Applicable 64,000*

DDIrI'C.BB(5+ 1) Not Applicable 51,000"

DDIFI'CFR.BB(6) Not Applicable 33,899

DDHTCFR.BB(5+ 1) Not Applicable 14,000 °

*Projected result based on timings from Table (B.5)

Table (B.5): Computational Timing Comparisons: CPU Time (secs) / Iteration / Linear System Solved

Method Laminar Turbulent

DDII.BB(6) 0.57562 Not Tested

DDII.BB(5) \ (1) 0.1409 \ 0.2675 Not Tested

DDIITC.BB(6) Not Applicable 1.2295

DDI1TC.BB(5) \ (1) Not Applicable 0.6630 \ 2.5500

DDIITCFR.BB(6) Not Applicable 0.6474

DDIITCFR.BB(5) \ (1) Not Applicable 0.2016 \ 0.5216

Table 011.6): Total Computer Memory Comparisons

Method Total Memory (Mw)

QA.CD, QA.CD(FJ)

DDII.BB(6), DDIITC.BB(6), DDIITCFR.BB(6)

DDII.BB(5) \ (1), DDIITC.BB(5) \ (1),

DDIITCFR.BB(5) \ (1)

7.39

48.85

42.38 \ 14.55

47

9.0 Appendix C: Tables of Acronyms

Table (C.1): General Terms

2-D

3-D

AD

ADIFOR

CFD

CPU

CW

FJ

FO

FR

gP

HD

IIM

LHS

MDO

NDV

NOF

OM

QA

RHS

SD

SO

TLNS

TC

Two-dimensional

Three-dimensional

Automatic differentiation

Automatic DIFferentiation of FORtran (software tool)

Computational fluid dynamics

Central processing unit (of computer)

Computational work (CPU time and memory used)

Frozen Jacobian (option for fast convergence of a CFD solution)

First-order (derivatives or Taylor series expansions)

Indicates that the turbulence correction terms are frozen

Parameter in all ADiFOR-generated FORTRAN source code

governing the length of do-loops to calculate a set of derivatives

Hand-differentiated (as opposed to finite differences or automatic

differentiation)

Incremental Iterative Method (as opposed to standard methods,

for solution of linear matrix equations)

Left-hand side (of an equation)

Multidisciplinary design optimization

Number of design variables

Number of output functions

Order of magnitude

Quasi-analytical (differentiation of discretized equations by

calculus, or "analytically", and by hand)

Right-hand side (of an equation)

Sensitivity derivative(s)

Second-order (derivatives or Taylor series expansions)

Thin-layer Navier-Stokes (equations or code)

Indicates that AD-generated turbulence-correction terms are

included

48.

Table(C.2):First-OrderFormulationsandSolutionStrategies

ADII

AV

AVII

AVIITC

BB

BBFJ

CD

CDFJ

DD

DDII

DDIITCFR

DDIITC

*(6)

*(5+1)

Automatic differentiation in incremental iterative form

Adjoint-variable (formulation for derivative equations)

Adjoint-variable incremental iterative (strategy)

AVII with AD-generated turbulence-modeling correction (not

currently possible)

Black-Box (straightforward application of AD, as opposed to an

application in incremental iterative form)

Black-Box with a frozen Jacobian

Central finite differences

Central finite differences with a frozen Jacobian

Direct differentiation (as opposed to adjoint-variable formulation)

Direct differentiation incremental iterative (strategy)

DDIITC with the AD-generated turbulence-modeling correction

frozen

DDII with AD-generatcdturbulence-modelingcorrection

Implementationforsixdesignvariablesconcurrently

Implementationfirstforfivedesignvariable,s concurrently,

followedby one designvariable

* Indicates each of the methods ADII, BB, and BBFJ

49

Table (C.3): Second-Order Formulations and Solution Strategies

rADII.SO

AV.DD

AV .AV

tAVII.BB

tBB.BB

CD.CD

DD.AV

DD.DD

DDII.BB

DDI1TC.BB

DDIITCFR.BB

QA.CD

QA.CD(FJ)

*(6)

*(5+1)

SO automatic differentiation in incremental iterative form

FO adjoint-variable approach, then SO direct differentiation

FO adjoint-variable approach, then SO adjoint-variable approach

FO AVII, then black-box automatic differentiation

Black-box automatic differentiation applied twice

Second-order central finite differences

FO direct differentiation, then SO adjoint-variable approach

FO direct differentiation, then SO direct differentiation

FO DDII, then black-box automatic differentiation

FO DDIITC, then black-box automatic differentiation

FO DDIITCFR, then black-box automatic differentiation

FO quasi-analytical differentiation, then first-order central finite

differences

QA.CD with a frozen Jacobian

Implementation for six design variables concurrently

Implementation first for five design variables concurrently,

followed by one design variable

t Not implemented.
* Indicates each of the methods DDII.BB, DDIITC.BB, and DDIITCFR.BB

50

